Articles

Catalog of Chinook Salmon Spawning Areas in Yukon River Basin in Canada and United States

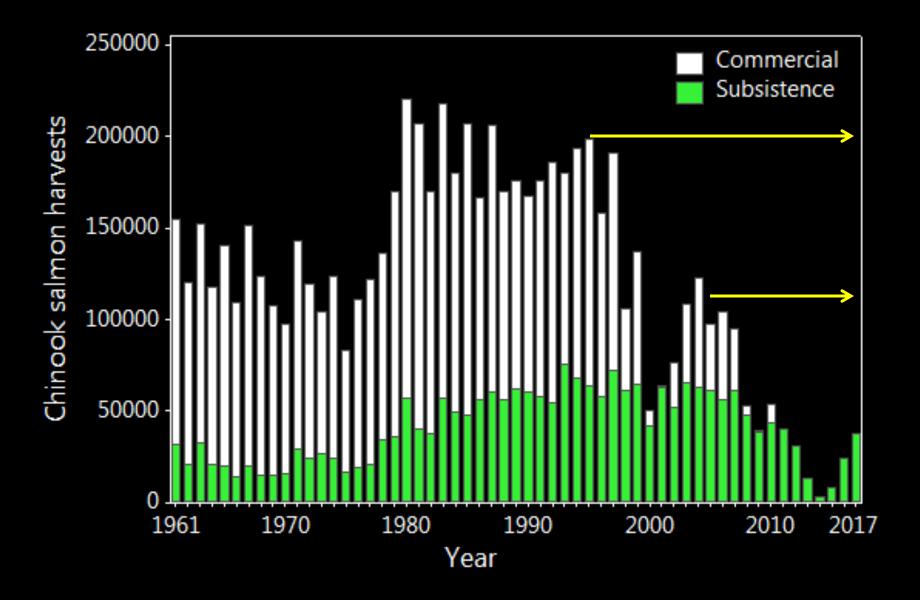
Randy J. Brown,* Al von Finster, Robert J. Henszey, John H. Eiler

R.J. Brown, R.J. Henszey

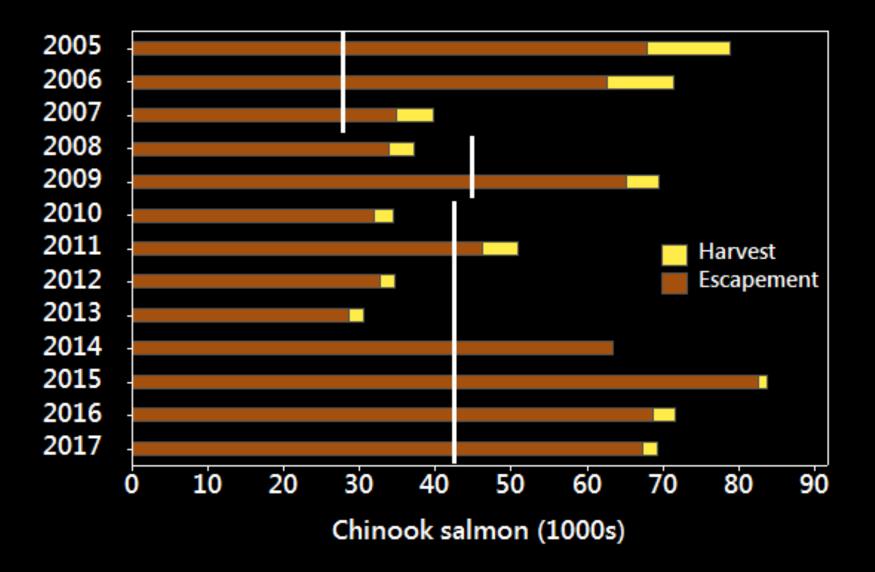
U.S. Fish and Wildlife Service, 101 12th Avenue, Room 110, Fairbanks, Alaska 99701

A. von Finster

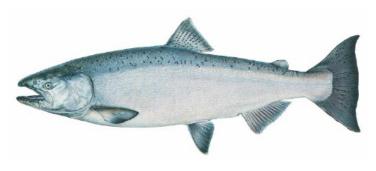
Fisheries and Oceans Canada, Whitehorse, Yukon Y1A 2T9, Canada; Retired


J.H. Eiler

National Marine Fisheries Service, 17109 Point Lena Loop Road, Juneau, Alaska 99801


Outline for the Presentation:

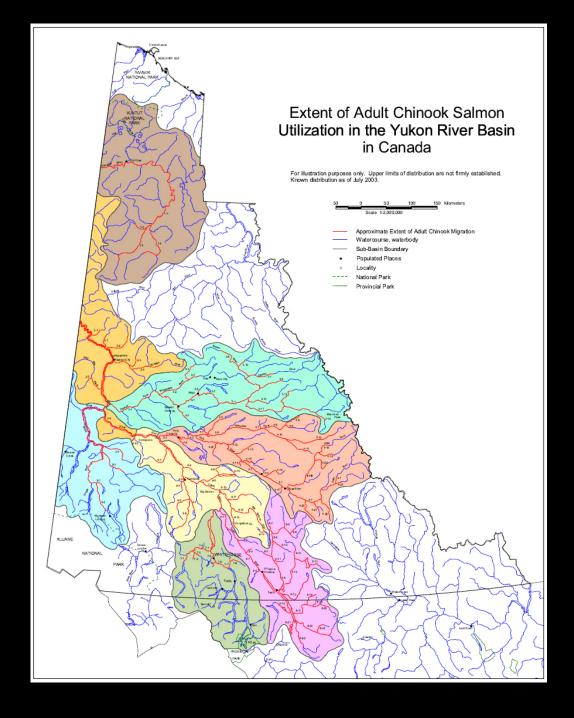
- 1) Inspiration for the research
- 2) Brief note on methodology
- 3) Summary of the major findings
- 4) Demographics of Chinook Salmon spawning runs



Sonar estimates of border passage (escapement plus harvest)

ARCTIC-YUKON-KUSKOKWIM CHINOOK SALMON RESEARCH ACTION PLAN

EVIDENCE OF DECLINE OF CHINOOK SALMON POPULATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH



ARCTIC-YUKON-KUSKOKWIM SUSTAINABLE SALMON INITIATIVE AYK SSI CHINOOK SALMON EXPERT PANEL

August 2013

Developed by Al von Finster, DFO

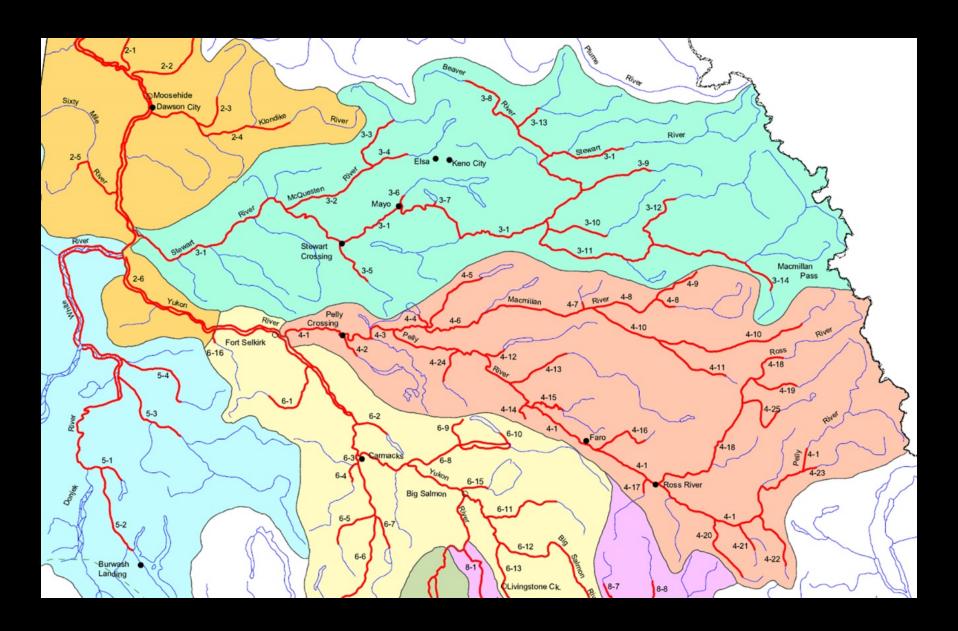


photo courtesy of USFWS, Subsistence 8

A CATALOG OF YUKON RIVER SALMON SPAWNING ESCAPEMENT SURVEYS

By: Louis H. Barton

July 1984

photo courtesy of ADFG

NAME (# = ALTERNATE NAME) NULATO R #				AINAGE KON R								I TUDE		ONG 58-0		
SE	EQ	DATE		1 N G DEAD REDDS	C H	U M DEAD	P I LIVE	N K DEAD	R E D LIVE DEAD	C O H O				_C (ם ַם	E.S
	14	07-20-77	95		5950						ME W 03 ME W	1 1	WA/VI	1	i	DIS 100 DIS
1 1	15 15 15 15	07-23-77 07-23-77 07-23-77 07-23-77	486 12 274 201		69660 15070 43205 11385						AREA 101 AREA 102 AREA 103	1 2	2 2	2	1	
1	16 16 16	07-13-78 07-13-78 07-13-78 07-13-78	453 1 281 171		4/956 15589 21815 10552						ME W 06 AREA 101 AREA 102 AREA 103	I WE	WA/VI	BOT	ΤI	DIS
1 1 1	1.7	07-26-78 07-26-78 07-26-78 07-26-78	736 398 338	184 100 84	36998 4750 25837 6411	17482 11072 6410					ME W 06 AREA 101 AREA 102 AREA 103	I WE	WA/VI	BOT 1	T I	DIS
1 1	18 18	07-16-79 07-16-79 07-16-79 07-16-79	1507 13 1080 414		35250 2409 31410 1431	1854 126 1653 75					ME W 01 AREA 101 AREA 102 AREA 103	I WE	WA/VI	вот	T I	DIS
₹ 47 5	SEQ REMARKS															

- 14 SURVEYED SOUTH FK ONLY. SURVEY EARLY. LIGHT SMOKE AND HAZE. RATING 70-80% EFFECTIVE.
- 15 100=TOTALS 101=MOUTH TO FK5. 102=NORTH FK 103=SOUTH FK. SMOKE HAZE AFFECTED CTS SLIGHTLY. COULD NOT SURVEY UPPER SECTIONS DUE CLOUD COVER. PROBABLY MISSED SOME KINGS.
- 16 100=SURVEY TOTAL 101=MOUTH TO FORKS 102=NORTH FK 103=SOUTH FK.
- 17 100=SURVEY TOTAL 101=MOUTH TO FORKS 102=NORTH FK 103= SOUTH FK.
- 18 100=SUPVEY TOTALS. 101=MOUTH TO FORKS 102=NORTH FK 103=SOUTH FK. SURVEY TOO EARLY ESPECIALLY FOR KINGS.

Transactions of the American Fisheries Society 143:1476-1507, 2014

@ American Fisheries Society 2014

ISSN: 0002-8487 print / 1548-8659 online DOI: 10.1080/00028487.2014.959997

ARTICLE

Distribution, Stock Composition and Timing, and Tagging Response of Wild Chinook Salmon Returning to a Large, Free-Flowing River Basin

John H. Eiler* and Michele M. Masuda

National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, Juneau, Alaska 99801, USA

Ted R. Spencer and Richard J. Driscoll

Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage, Alaska 99518, USA

Carl B. Schreck

U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331, USA

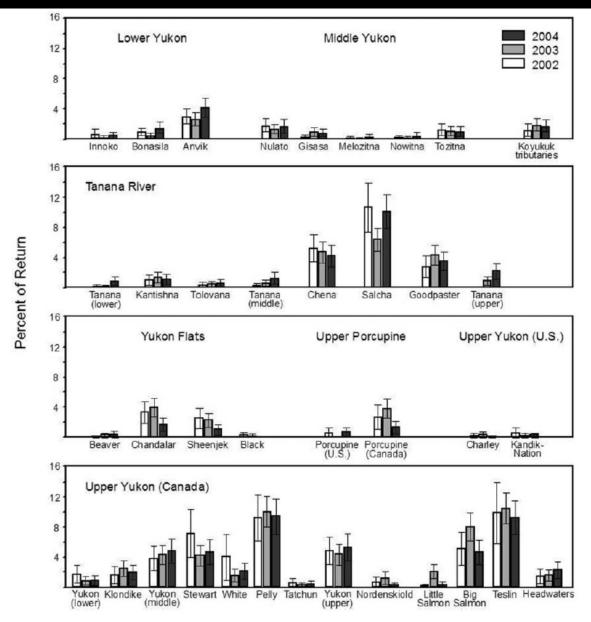
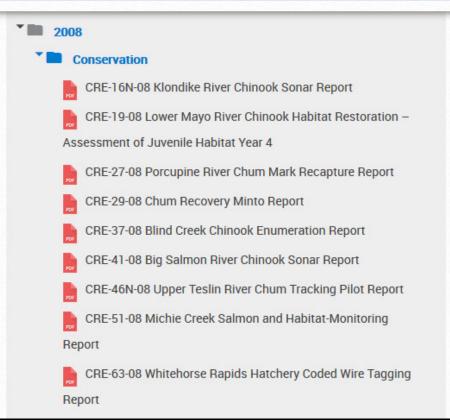


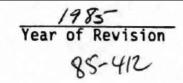
FIGURE 9. Stock composition of Chinook Salmon stocks returning to terminal reaches of the Yukon River basin in 2002–2004, based on the distribution of radio-tagged fish weighted by catch per unit effort information at the Russian Mission tagging site and adjusted for the harvest of tagged individuals in upriver fisheries. Error bars = 95% confidence intervals.

Search ... Search

ABOUT US


PUBLICATIONS

MEMBERSHIP LISTS


MEETINGS

R & E FUND

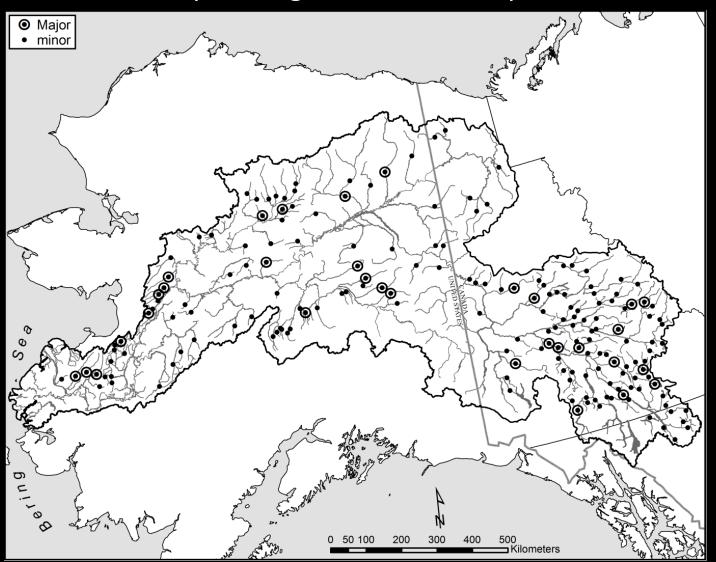
Home

State of Al	laska	
Department	of Fish	and same
Nomination	for Wate	ers
Important 1	to Anadr	omous Fish

AWC Volume & Number Interior Region IV	For Office Approval		
USGS Quad Charlie Riner B-2 A-2 (111)	Nomination II		
Name of Waterway <u>Nation</u> River AWC# of Waterway 334-45-11000 -2401	Regional Supervisor Date		
Change to Atlas Catalog ALASKA DEPT. OF Both FISH & GAME	OKSOB INTERS		
Addition SEP 3 0 1985 Deletion REGION II Name addition Watton River	773 /0-23-85 Drafted		
Name addition Wation Kiver USGS name 4 Local name 4			

Species	Date(s) Observed	Spawning	Rearing	Migration
King Salaon	8-19-85	1		1
1177	A The state of the			100
	3			1
-,				

We used three indicators of abundance to classified spawning areas as major or minor producers:


- 1) escapement estimates, major producer if annual average ≥500 fish, minor producer if <500 fish;
- 2) radio telemetry proportions, major producer if annual average proportion of run ≥1%, minor producer if <1%;

3) aerial survey counts, major producer if annual average ≥165,

minor producer if <165.

We classified 32 spawning areas as major producers and 151 spawning areas as minor producers

	Spawning			Survey
Region	areaª	Escapements	Telemetry	counts
R1	Andreafsky R.			1,130 (48)
R1	Anvik R.		~3.2% (3)	1,075 (34)
R1	Atchuelinguk R			456 (13)
R1	EF Andreafsky R.	3,748 (25)		1,306 (46)
R1	Nulato R.			789 (33)
R1	Rodo R.			314 (13)
R1	SF Nulato R.			580 (35)
R2	Gisasa R.	2,289 (22)		723 (34)
R2	Henshaw Cr.	966 (14)		306 (18)
R2	SF Koyukuk R.	1,438 (2)		301 (20)
R2	Tozitna R.	1,381 (9)	1.1% (3)	
R3	Barton Cr.			232 (9)
R3	Chatanika R.	997 (7)		
R3	Chena R.	6,450 (28)	4.8% (3)	1,956 (15)
R3	Goodpaster R.	2,034 (9)	3.6% (3)	860 (20)
R3	Salcha R.	9,051 (28)	9.1% (3)	3,583 (17)
R4	Teedriinjik R.		3.0% (3)	
R5	Sheenjek R.		2.0% (3)	
R6	Klondike R.	2,377 (3)	2.0% (3)	
R6	McQuesten R.		~2.6% (3)	
R7	Big Salmon R.	~5,380 (11)	~5.2% (3)	911 (43)
R7	Little Salmon R.			559 (27)
R7	MS Yukon R.		4.9% (3)	
R7	Nisling R.		~1.3% (3)	
R7	Tatchun Cr.	618 (3)		201 (27)
R8	Blind Cr.	588 (17)		
R8	Ross R.			331 (15)
R8	S Macmillan R.		~1.1% (2)	
R9	L Teslin R.	~5,000 (4)	~4.9% (3)	
R9	Takhini R.			260 (16)
R9	U Nisutlin R.			439 (41)
R9	Wolf R.			221 (36)

	Spawning			Survey
Region	area ^a	Escapements	Telemetry	counts
R1	Andreafsky R.			1,130 (48)
R1	Anvik R.		~3.2% (3)	1,075 (34)
R1	Atchuelinguk R			456 (13)
R1	EF Andreafsky R.	3,748 (25)		1,306 (46)
R1	Nulato R.			789 (33)
R1	Rodo R.			314 (13)
R1	SF Nulato R.			580 (35)
R2	Gisasa R.	2,289 (22)		723 (34)
R2	Henshaw Cr.	966 (14)		306 (18)
R2	SF Koyukuk R.	1,438 (2)		301 (20)
R2	Tozitna R.	1,381 (9)	1.1% (3)	
R3	Barton Cr.			232 (9)
R3	Chatanika R.	997 (7)		
R3	Chena R.	6,450 (28)	4.8% (3)	1,956 (15)
R3	Goodpaster R.	2,034 (9)	3.6% (3)	860 (20)
R3 <	Salcha R.	9,051 (28)	9.1% (3)	3,583 (17)
R4	Leedriinjik R.		3.0% (3)	
R5	Sheenjek R.		2.0% (3)	
R6	Klondike R.	2,377 (3)	2.0% (3)	
R6	McQuesten R.		\sim 2.6% (3)	
R7	Big Salmon R.	~5,380 (11)	\sim 5.2% (3)	911 (43)
R7	Little Salmon R.			559 (27)
R7	MS Yukon R.		4.9% (3)	
R7	Nisling R.		~1.3% (3)	
R7	Tatchun Cr.	618 (3)		201 (27)
R8	Blind Cr.	588 (17)		
R8	Ross R.			331 (15)
R8	S Macmillan R.		~1.1% (2)	
R9	L Teslin R.	~5,000 (4)	~4.9% (3)	
R9	Takhini R.			260 (16)
R9	U Nisutlin R.			439 (41)
R9	Wolf R.			221 (36)

Salcha River tower counting operation

photo courtesy of Chris Stark₂₂

7 counts 1,130 (48) 1,075 (34) 456 (13) 1,306 (46) 789 (33) 314 (13) 580 (35) 723 (34) 306 (18) 301 (20) 232 (9)
1,075 (34) 456 (13) 1,306 (46) 789 (33) 314 (13) 580 (35) 723 (34) 306 (18) 301 (20)
456 (13) 1,306 (46) 789 (33) 314 (13) 580 (35) 723 (34) 306 (18) 301 (20)
1,306 (46) 789 (33) 314 (13) 580 (35) 723 (34) 306 (18) 301 (20)
789 (33) 314 (13) 580 (35) 723 (34) 306 (18) 301 (20)
314 (13) 580 (35) 723 (34) 306 (18) 301 (20)
580 (35) 723 (34) 306 (18) 301 (20)
723 (34) 306 (18) 301 (20)
306 (18) 301 (20)
301 (20)
232 (9)
1,956 (15)
860 (20)
3,583 (17)
)
911 (43)
559 (27)
201 (27)
331 (15)
260 (16)
439 (41)
221 (36)

	Spawning	River				
Region	area	kilometer	Latitude	Longitude	PC	Source(s)
R6	S McQuesten R.	2491	63.84439	-136.30215	m	Barton 1984a; Nacho Nyak Dun First Nation 1998; Tobler 2003a
R6	Sixty Mile R.	2246	63.56330	-139.76211	m	Mercer 2005; Duncan 2006
R6	U Stewart R.	2608	63.56046	-133.96579	m	Osborne et al. 2003
R6	Watson Cr.	2548	63.53574	-135.15401	m	Osborne et al. 2003; Mercer 2005
R7	Bearfeed Cr.	2654	62.16793	-135.07765	m	Walker et al. 1974; Tobler and Marjanovic 2011
R7	Big Cr.	2450	62.61606	-136.99351	m	Mercer and Eiler 2004; Tobler and Marjanovic 2011
R7	Big Salmon R.	2652	61.88011	-134.92084	M	Tobler and Marjanovic 2011; Estensen et al. 2012; Eiler et al. 2014
R7	Drury Cr.	2692	62.19613	-134.38761	m	Walker et al. 1974; Tobler and Marjanovic 2011
R7	Incised Cr.	2583	62.04335	-136.27931	m	Pumphrey 2001; Tobler and Marjanovic 2011
R7	Kirkland Cr.	2669	61.74405	-136.04099	m	von Finster 1995 (personal communication)*; Pumphrey 2001; Tobler and Marjanovic 2011
R7	Klottasin Cr.	2415	62.56538	-139.51004	m	Otto 1998a; Cox 1999; Mercer and Eiler 2004
R7	Kluane R.	2523	61.87685	-139.72029	m	Beak Consultants Limited 1977; Cox 1999
R7	Klusha Cr.	2676	61.73597	-136.01366	m	Otto 1998b; Pumphrey 2001; Tobler and Marjanovic 2011
R7	Little Salmon R.	2591	62.05396	-135.66633	M	Estensen et al. 2012; Sandone 2013; Eiler et al. 2014
R7	MS Yukon R.	2422	62.76184	-137.30600	M	Walker 1976; Milligan et al. 1985; Mercer and Eiler 2004
R7	N Big Salmon R.	2684	61.76209	-134.61391	m	Mercer 2005; Tobler and Marjanovic 2011; von Finster 2014
R7	Nisling R.	2429	62.46299	-139.48170	M	Otto 1998a; Mercer 2005; Wilson 2006
R7	Nordenskiold R.	2573	62.10214	-136.30123	m	Tobler and Marjanovic 2011; Flannery et al. 2012; Eiler et al. 2014
R7	Northern Cr.	2748	61.84719	-133.97581	m	Walker et al. 1974; Mercer 2005; Tobler and Marjanovic 2011
R7	S Big Salmon R.	2710	61.60735	-134.43774	m	Walker et al. 1974; Barton 1984a; Tobler and Marjanovic 2011
R7	Scurvy Cr.	2798	61.21519	-133.24122	m	Walker et al. 1974; Osborne et al. 2003; Tobler and Marjanovic 2011
R7	Selwyn R.	2373	62.80351	-138.28462	m	von Finster 1985 (personal communication)*
R7	Tatchun Cr.	2510	62.28553	-136.32524	M	Flannery et al. 2012; Eiler et al. 2014; JTC 2016
R7	Tincup Cr.	2535	61.88768	-139.54533	m	Wilson 2002; Estensen et al. 2012; MacDonald 2013
R7	Walsh Cr.	2644	61.92001	-134.94149	m	Tobler and Marjanovic 2011
R8	Anvil Cr.	2713	62.44431	-134.12903	m	Mercer 2005
R8	Big Campbell Cr.	2963	61.77272	-131.12878	m	Mercer and Eiler 2004; Mercer 2005
R8	Big Kalzas R.	2580	62.89228	-135.48500	m	Sparling 2003; Flannery et al. 2012; MacDonald 2013
R8	Blind Cr.	2792	62.17998	-133.22044	M	Estensen et al. 2012; Flannery et al. 2012; Wilson 2017
R8	Earn R.	2648	62.73648	-134.69729	m	Sparling 2003; Flannery et al. 2012; State of Alaska 2016b
R8	Glenlyon R.	2701	62.48280	-134.16357	m	Cox 1999; Tobler and Marjanovic 2011; Flannery et al. 2012

Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington

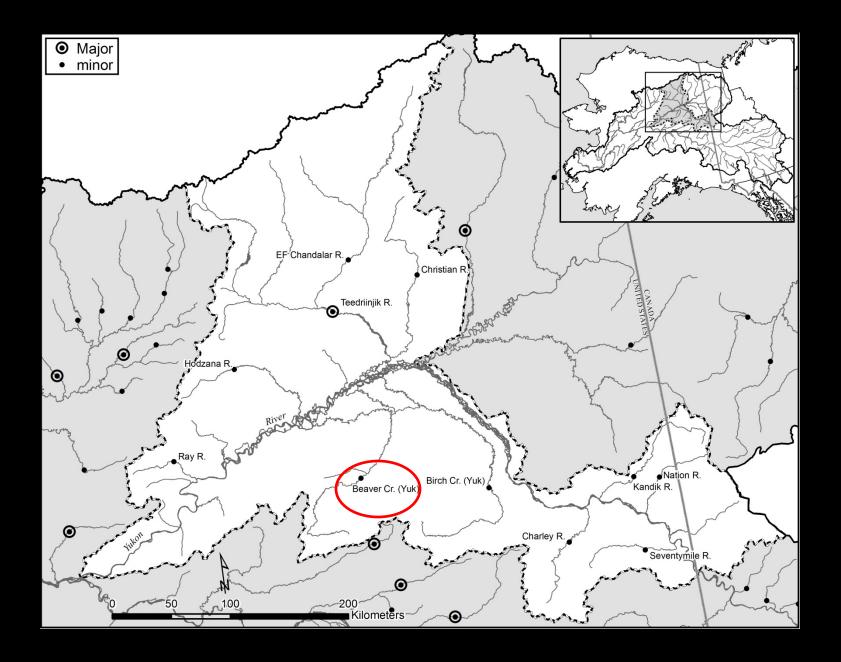
Willa Nehlsen, Jack E. Williams, and James A. Lichatowich

Fisheries 1991

Populations having recent escapements under 200, in the absence of evidence that they were historically small, were classified as being at high risk of extinction.

1996: 192 Chinook

1997: 315 Chinook


1999: 128 Chinook

2000: 114 Chinook

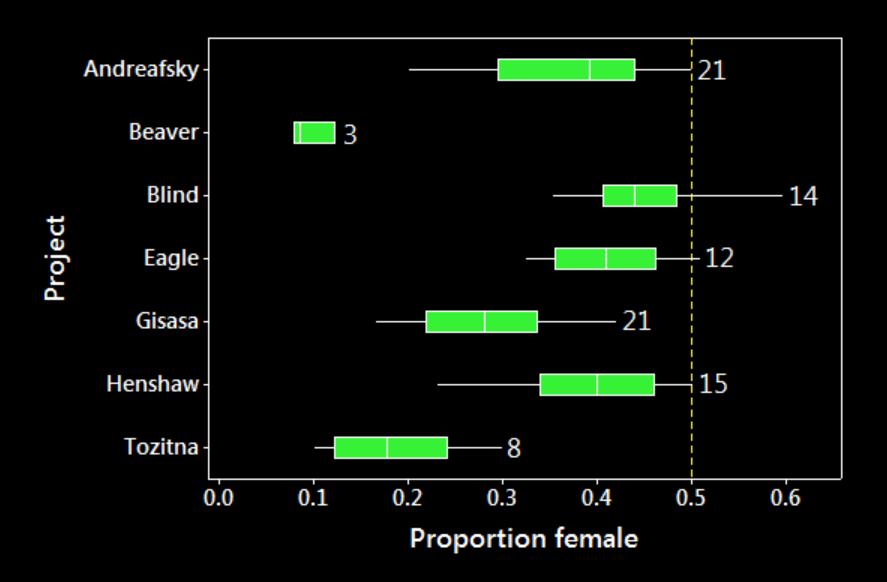
Adult Salmon Runs and Streamflow Data at a Resistance Board Weir on Beaver Creek, Alaska, 1998-2000

Nathan Collin, Lon Kelly and Jon Kostohrys

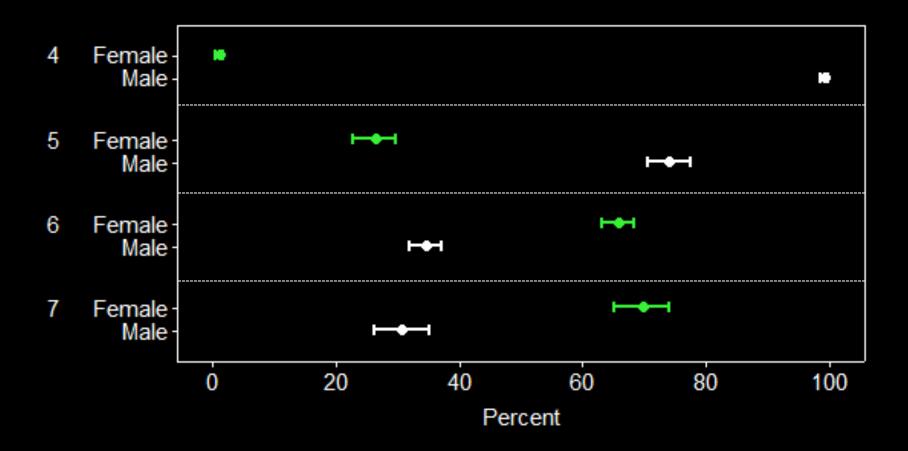
1996: 192 Chinook

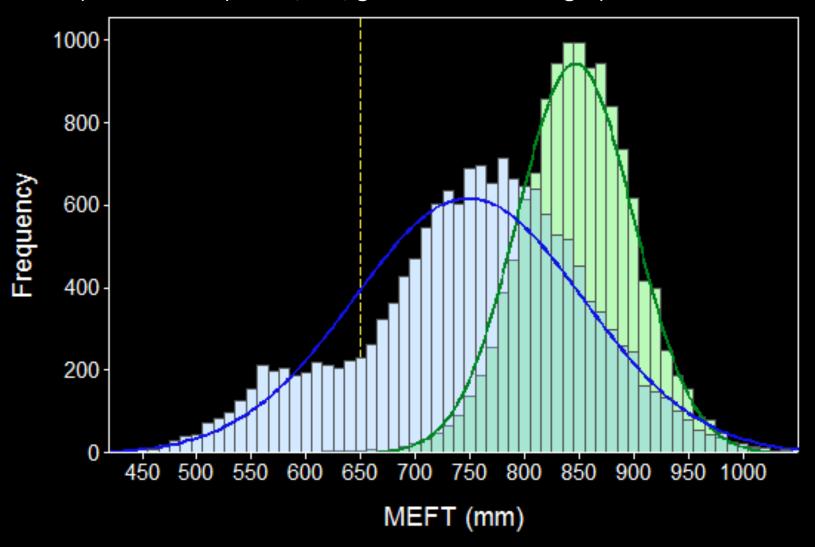
1997: 315 Chinook, 25 F

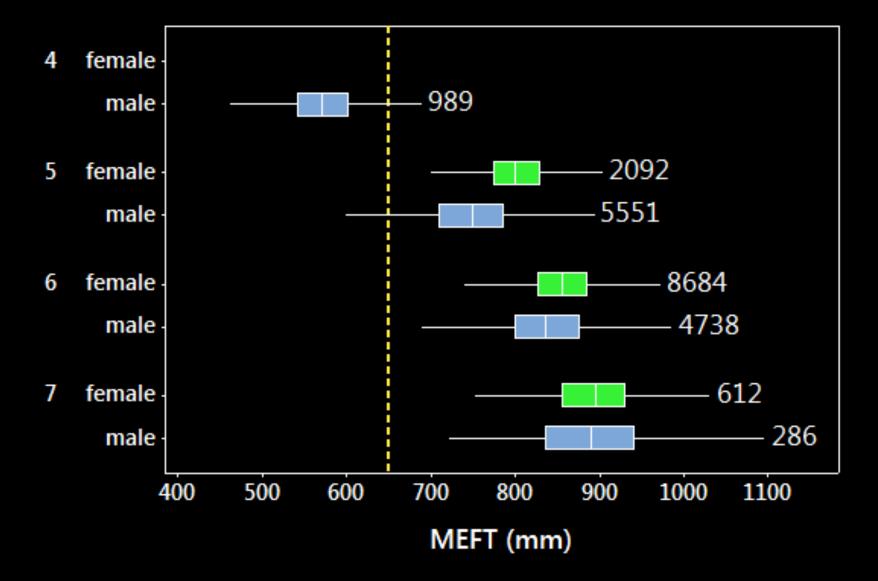
1999: 128 Chinook, 11 F


2000: 114 Chinook, 14 F

Adult Salmon Runs and Streamflow Data at a Resistance Board Weir on Beaver Creek, Alaska, 1998-2000


Nathan Collin, Lon Kelly and Jon Kostohrys


Proportion female for Chinook Salmon spawning runs are almost always < 0.5



Sex composition within the 4 dominant age classes 22,952 known-sex samples, 18 years of data

Length distributions of known sex male (n = 16,261; blue bars to the left) and female (n = 12,614; green bars to the right) Chinook Salmon

Pilot Station (1998 – 2017) and Eagle (2005 – 2017) sonars East Fork Andreafsky (1994 – 2016) and Gisasa (1995 – 2016) weirs

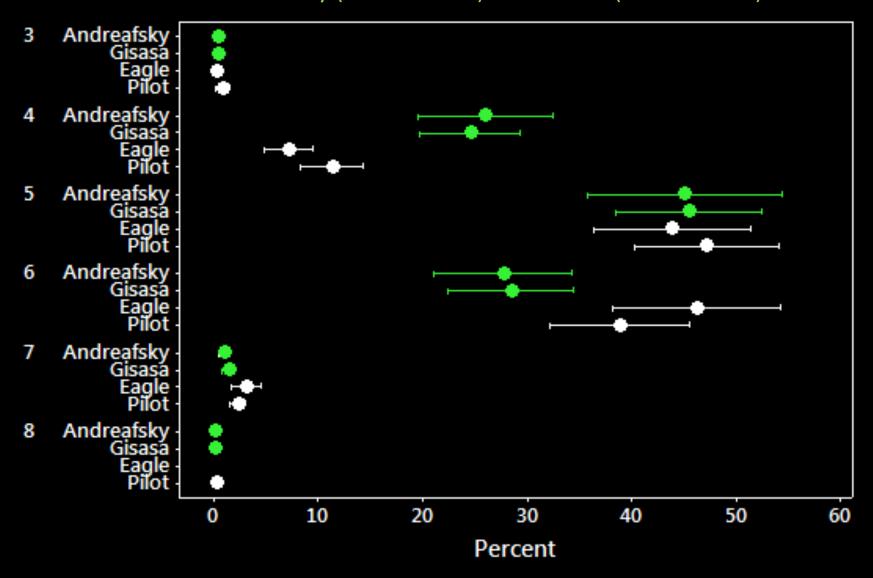


Photo by Paul Vecsei